From Sweat to Shock: Understanding the Perceived Connection Between Sweat Residue and Static Discharge
DOI:
https://doi.org/10.35654/ijnhs.v8i6.900Keywords:
electrostatic discharge, sweat residue, conductivity, skin ions, nursing safetyAbstract
Studi empiris ini menyelidiki hubungan fisikokimia antara residu keringat dan terjadinya pelepasan muatan listrik statis (ESD) pada kulit manusia. Akumulasi residu keringat, yang kaya akan komponen ionik seperti Na?, K?, dan Cl?, dihipotesiskan memengaruhi konduktivitas permukaan kulit dan, selanjutnya, potensi pelepasan muatan statis. Studi kuasi-eksperimental ini melibatkan 100 peserta sehat yang dibagi rata menjadi dua kelompok: mereka yang memiliki residu keringat alami (eksperimental) dan mereka yang memiliki permukaan kulit yang bersih (kontrol). Pembacaan voltmeter elektrostatik dan analisis kromatografi ion dilakukan untuk mengkuantifikasi potensi pelepasan dan konsentrasi ion residu. Hasil menunjukkan tegangan pelepasan yang secara signifikan lebih tinggi pada kelompok residu keringat (mean = 2,42 kV, SD = 0,45) dibandingkan dengan kelompok kontrol (mean = 1,68 kV, SD = 0,32; p < 0,001). Residu natrium menunjukkan korelasi positif yang kuat dengan besarnya pelepasan ( r = 0,73, p < 0,001). Temuan ini menyoroti pentingnya pengelolaan hidrasi kulit dan pengendalian residu di lingkungan pelayanan kesehatan untuk mencegah kejadian mikrostatik. Penelitian lebih lanjut direkomendasikan untuk mengevaluasi risiko ESD pada berbagai tingkat kelembapan dan komposisi kulit.
Downloads
References
(1.) Cavallini A, Castagnetti D, Rossi S. Human skin charge accumulation and dissipation: influence of moisture and surface ions. J Electrostat. 2022;118:103824.
(2.) Zhao X, Zhang J, Liu Y, et al. Ion-mediated charge separation and static generation at biointerfaces. Nat Commun. 2023;14(1):3287.
(3.) Ma Q, Lin Z, Xu Y. Triboelectric phenomena in biological systems: From fundamentals to biomedical applications. Adv Mater. 2022;34(17):2108823.
(4.) Kim YJ, Lee S, Park C. Electrostatic hazards and prevention strategies in hospital environments. Saf Health Work. 2020;11(3):345–52.
(5.) Hossain M, Rahman MM, Khan F. Influence of environmental humidity on static electricity in human activities. Build Environ. 2021;205:108244.
(6.) Knapik JJ, Staab JS, Harman EA. Sweat electrolyte loss and skin conductivity: implications for physiological monitoring. J Appl Physiol. 2021;130(2):523–31.
(7.) Lin Z, Huang W, Zhao X, et al. Charge dynamics at epidermal interfaces: implications for wearable electronics. Adv Sci. 2024;11(6):2306219.
(8.) Nguyen H, Park SJ, Cho J. Effect of sweat evaporation and salt crystallization on skin dielectric properties. Biophys J. 2024;123(4):845–57.
(9.) Zhou Y, Liu T, Cheng Y. Electrostatic shock risk in healthcare: an underexplored occupational hazard. Occup Med (Lond). 2023;73(2):112–9.
(10.) Park S, Choi H, Kim J. Antistatic material application in clinical uniforms: reducing discharge risk. Text Res J. 2024;94(1):78–90.
(11.) Wang ZL. Triboelectric nanogenerators as new energy technology for self-powered systems and sensors. ACS Nano. 2021;15(2):1439–73.
(12.) Zhao T, Zhang X, Huang Y. Moisture-induced triboelectrification and charge transfer dynamics. Adv Funct Mater. 2022;32(12):2200173.
(13.) Xu C, Luo J, Yan J. Humidity effects on triboelectric charge density and dissipation on skin surfaces. Nano Energy. 2023;115:108745.
(14.) Lee Y, Han J, Kim T. Skin impedance and ionic dynamics under variable humidity: biophysical implications. Sci Rep. 2020;10(1):20240.
(15.) Luo J, Wang J, Xu C. Ionic mechanisms of electrostatic charge in biological tissues. Proc Natl Acad Sci USA. 2021;118(34):e2102745118.
(16.) Ahmed I, Kumar S. Physicochemical characteristics of human sweat: variability and diagnostic potential. Clin Chim Acta. 2020;510:770–8.
(17.) Bhardwaj S, Singh R. Electrostatic hazards in medical devices: a review of safety and standards. Biomed Eng Online. 2021;20(1):97.
(18.) Li X, Liu Y, Zhang T. Effect of sodium ion residue on surface dielectric breakdown. Appl Surf Sci. 2022;605:154761.
(19.) Kang H, Kim J, Park J. Role of epidermal salt microstructures in charge accumulation on human skin. Langmuir. 2023;39(6):2145–56.
(20.) Seo M, Yoon C. Electrostatic field exposure and human perception thresholds. IEEE Trans Dielectr Electr Insul. 2021;28(5):1897–905.
(21.) Zhou W, Zhang X, Yang F. Surface charge regulation in sweat-induced interfaces. Colloids Surf B Biointerfaces. 2024;234:112528.
(22.) Hu P, Deng Q. Hygroscopic behavior of sodium chloride crystals in skin residues. Chem Phys Lett. 2022;797:140307.
(23.) Jung J, Lee D, Kim K. Moisture and ion effects on dielectric properties of skin tissue. J Phys Chem B. 2021;125(38):10678–87.
(24.) Cheng S, Xu J. Understanding electrostatic discharge risks in wearable health devices. IEEE Access. 2023;11:74611–24.
(25.) Rahman MM, Uddin M, Hossain M. Environmental factors influencing static discharge risk in hospitals. Int J Occup Saf Ergon. 2021;27(3):810–9.
(26.) Wu J, Liu Q, Zhao D. Quantitative assessment of charge dissipation in human skin: a triboelectric perspective. Nano Energy. 2022;94:106908.
(27.) Chen X, Yang Y, Li W. Characterizing bioelectric potentials generated from skin friction. Nat Mater. 2020;19(10):1080–7.
(28.) Tanaka T, Hori M. Static electricity control in healthcare electronics: challenges and mitigation. IEEE Trans Biomed Eng. 2022;69(12):3772–80.
(29.) Kang J, Oh M, Lee J. Real-time monitoring of human skin charge using flexible sensors. Sensors Actuators B Chem. 2023;391:133401.
(30.) Fujita K, Sato A. Thermal and electrical behavior of salt crystals on dermal surfaces. J Phys D Appl Phys. 2024;57(4):045002.
(31.) Li Y, Qian X, Zhou R. Relationship between sweat ionic content and skin potential changes. Front Physiol. 2023;14:1159924.
(32.) Wang F, Guo W. Contact electrification and ion trapping phenomena in moist environments. ACS Appl Mater Interfaces. 2021;13(47):55548–59.
(33.) Takahashi M, Yamada N. Effects of ambient humidity and ion density on human body charge decay. IEEE Trans Ind Appl. 2022;58(4):4672–9.
(34.) Suh Y, Choi D, Park J. Micro-ion accumulation and skin potential difference under low moisture. Bioelectrochemistry. 2022;147:108212.
(35.) Zhang Y, Liu J, Ren P. The role of sweat-induced dielectric films in charge dissipation. J Colloid Interface Sci. 2023;647:23–34.
(36.) Ahn S, Kim M. Bioelectric and triboelectric interplay at epidermal surfaces. Nano Energy. 2024;120:108838.
(37.) Kawano M, Itoh T. Charge transfer and relaxation in human skin models. J Appl Phys. 2023;133(18):185301.
(38.) Wang X, Zhao Y. Humidity-modulated triboelectrification for biomedical safety. Nano Today. 2021;41:101325.
(39.) Singh R, Kumar M. Electrostatic management for patient safety in clinical engineering. Clin Eng J. 2020;43(3):176–83.
(40.) Tan S, Wei J. Environmental control strategies to prevent electrostatic hazards in medical facilities. Int J Environ Res Public Health. 2021;18(17):9254.
(41.) Zhang J, Lu C, Han Y. Sweat residue crystallization and its effect on biointerface charge transfer. Langmuir. 2024;40(2):345–58.
(42.) Yang G, Shen L, Wu Z. Human perception of electrostatic shocks under controlled humidity. IEEE Trans Plasma Sci. 2022;50(5):1457–66.
(43.) Kumar P, Reddy S. Dielectric behavior of skin under varying ion concentrations. Physiol Meas. 2023;44(3):035005.
(44.) Bianchi M, Rossi A. Quantitative analysis of sweat ion retention and charge buildup. J Biomech Eng. 2023;145(12):121005.
(45.) Liu Z, Chen J, Ma L. Moisture adsorption kinetics on epidermal residues. Appl Surf Sci. 2024;633:157861.
(46.) Rahman A, Yusuf N. Electrostatic interference in medical sensors: mechanisms and mitigations. IEEE Rev Biomed Eng. 2022;15:120–32.
(47.) Hu Y, Zhang P, Lin X. Bioelectrical effects of ionic residue films on human skin. Biointerphases. 2023;18(3):031001.
(48.) Pereira T, Almeida C. Evaluating static discharge risk among healthcare workers. Int J Occup Med Environ Health. 2021;34(4):491–504.
(49.) Park H, Jung S, Lee H. Static dissipation and comfort performance of antistatic hospital textiles. Text Res J. 2023;93(14):2869–81.
(50.) Mohapatra A, Tripathi A. Mechanistic insights into triboelectric charging in humid environments. Prog Surf Sci. 2022;97(2):100623.
(51.) Chen J, Wang S. Triboelectric nanogenerators for human interface energy harvesting. Nat Rev Mater. 2020;5(10):722–40.
(52.) Tao X, Zhang W. Skin charge accumulation and dissipation under ambient air conditions. ACS Appl Phys Mater. 2023;6(1):224–34.
(53.) Figueiredo J, Silva R. Hygroionic behavior of epidermal surfaces: implications for conductivity. J Biophys Chem. 2021;12(2):89–102.
(54.) Patel R, Desai K. Managing electrostatic discharge in healthcare facilities: policy and practice. J Hosp Adm. 2023;10(2):45–57.
(55.) Singh N, Yadav S. Electrostatic phenomena in human skin and safety implications. Med Eng Phys.
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Nursing and Health Services (IJNHS)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



